English (United Kingdom)
Home Publications

Drucken E-Mail

Peer Reviewed Papers & Selected Others


• Patentanmeldung / Patent Application  "Verfahren zur simultanen Konzentrationsmessung mehrerer Spurengase durch selektive optische Sättigungsspektroskopie / Method for simultaneous measurement of several trace gases based on selective optical saturation spectroscopy"

G. Friedrichs, I. Sadiek, DE 10 2018 112 717.0 (28.05.2018).

 Entwicklung eines theoriebasierten Lernangebots für die Physikalische Chemie  

J. Lorentzen, M. Ropohl, G. Friedrichs M. Steffensky

in: B. Brouer, A. Burda-Zoyke, J. Kilian, I. Petersen (Hrsg., in Vorbereitung): Vernetzung in der Lehrerinnen- und Lehrerbildung. Ansätze, Methoden und erste Befunde aus dem LeaP-Projekt an der Christian-Albrechts-Universität zu Kiel. Münster: Waxmann; eingereicht.

• Editorial: Kinetics in the real world - linking molecules, processes and systems (PCCP Themed Issue of the International Bunsentagung 2018)

K. Kohse-Höinghaus, J. Troe, J.-U. Grabow, M. Olzmann, G. Friedrichs, K.-D. Hungenberg

Phys. Chem. Chem. Phys. (2018), in press, doi: 10.1039/c8cp90054j.

• Organic matter in the surface microlayer: Insights from a wind wave channel experiment

A. Engel, M. Sperling, C.C. Sun, J. Grosse, G. Friedrichs 
Frontiers in Marine Sciences - Marine Biogeochemistry (2018), in press, doi: 10.3389/fmars.2018.00182. 
• Kinetics of the a-C3H5 + O2 reaction, investigated by photoionization using synchrotron radiation

D. Schleier, P. Constantinidis, N. Faßheber, I. Fischer, G. Friedrichs, P. Hemberger, E. Reusch, B. Sztáray, K. Voronova

Phys. Chem. Chem. Phys. (2018), in press, doi: 10.1039/c7cp07893e.

• Quantitative Mid-Infrared Cavity Ringdown Detection of Methyl Iodide for Monitoring Applications
I. Sadiek, Qiang Shi, D.W.R. Wallace, G. Friedrichs 
Anal. Chem. 89 (2017) 8445 – 8452, doi:10.1021/acs.analchem.7b01970.

• Sub-Monolayer NIR-ew-CRD Spectroscopy: Picosecond Versus Continuous Wave Laser Excitation

A.-K. Baumann, I. Piller, G. Friedrichs
Bunsen-Magazin 19 (2017) 197.

• Patent  "Großflächiger Biofilmsensor / Large-area biofilm sensor"

M. Fischer, G. Friedrichs. M. Wahl, DE 102011101934 (19.05.2017).

Review: The ocean’s vital skin: Towards an integrated understanding of the sea surface microlayer
A. Engel, H. W. Bange, M. Cunliffe, S. M. Burrows, G. Friedrichs, L. Galgani, H. Herrmann, N. Hertkorn, M. Johnson, P. Liss, P. Quinn, M. Schartau, A. Soloviev, C. Stolle, R. Upstill-Goddard, M. van Pinxteren, B. Zaencker
Front. Mar. Sci. - Marine Biogeochemistry 4 (2017) 165/1-14, doi: 10.3389/fmars.2017.00165. 

• Doppler-Limited High-Resolution Spectrum and VPT2 Assisted Assignment of the C-H Stretch of CH2Br2
I. Sadiek, G. Friedrichs
Spectrochimica Acta Part A 181 (2017) 180 - 191, doi:10.1016/j.saa.2017.03.027 

Quantitative HNO Detection Behind Shock Waves 
N. Faßheber, M. C. Schmidt, G. Friedrichs
Proc. Combust. Inst. 36 (2016)  doi:10.1016/j.proci.2016.05.035
Distinguished Paper Award (Reaction Kinetics) @ 36th Symp. Int. Combust., Combustion Institute

• Saturation Dynamics and Working Limits of Saturated Absorption Cavity Ringdown Spectroscopy
I. Sadiek, G. Friedrichs
Phys. Chem. Chem. Phys. 18 (2016) 22978 - 22989, doi:10.1039/C6CP01966H.

Marine applications for a promising new spectroscopic method 
G. Friedrichs, A. Schneider, and H. W. Bange
Eos: Earth & Space Science News 96 (2015), doi:10.1029/2015EO040395.

• Shock Tube Measurements of the Rate Constant of the Reaction NCN + O2 

N. Faßheber, G. Friedrichs
Int. J. Chem. Kinet. 47 (2015) 586-595, doi: 10.1002/kin.20932.

• Rate constant of the reaction NCN + H2 and its role for NCN and NO modeling in low pressure CH4/O2/N2-flames 

N. Faßheber, N. Lamoureux, G. Friedrichs
Phys. Chem. Chem. Phys. 17 (2015) 15876 - 15886, doi: 10.1039/C5CP01414J .

• Working limits of Saturated Absorption Cavity Ringdown Spectroscopy (Sat-CRDS)

I. Sadiek, G. Friedrichs
Bunsen-Magazin 17 (2015) 185.

• Glyoxal Oxidation Mechanism: Implications for the reactions HCO + O2 and OCHCHO + HO2

 N. Faßheber, G. Friedrichs, Paul Marshall, Peter Glarborg
J. Phys. Chem. A 119 (2015) 7305 - 7315 , doi: 10.1021/jp512432q  .

• Fluorescence based, quasi-continuous and in situ monitoring of biofilm formation dynamics in natural marine environments
M. Fischer, G. Friedrichs, T. Lachnit
Appl. Environm. Microbiol. 80 (2014), 3721-3728; doi: 10.1128/AEM.00298-14  . Selected as Spotlight Article.

• Guide to best practices to study the ocean’s surface (M.Cunliffe, O. Wurl - eds.). Chapter 2 - Sampling Technique: Screen Sampler.

B. Gašparović, K. Laß, S. Frka, A. Reunamo, G.-P. Yang, R. Upstill-Goddard

Occasional Publications of the Marine Biological Association of the United Kingdom, Plymouth, UK (2014), ISSN 0260-2784.

• Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN 

N. Faßheber, J. Dammeier, G. Friedrichs
Phys. Chem. Chem. Phys. 16 (2014)  11647-11657; doi: 10.1039/C4CP01107D  . Selected as Hot Article.

• Quantitative time-resolved vibrational sum frequency  generation spectroscopy as a tool for thin film kinetic studies: New insights into oleic acid monolayer oxidation

J. Kleber, K. Laß, G. Friedrichs
J. Phys. Chem. A 117 (2013) 7863 - 7875; doi: 10.1021/jp404087s  .

• Systematic Investigations on Bismuth Tri- and Tetraarylcarboxylates: Crystal Structures - in situ X-ray Diffraction - Intermediates - Luminescence
M. Feyand, M. Köppen, G. Friedrichs, N. Stock
Chem.-Eur. J. 19 (2013) 12537 - 12546; doi: 10.1002/chem.201301139  .

• Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea)
K. Laß, H. Bange, G. Friedrichs
Biogeosciences10 (2013) 5325-5334; doi:10.5194/bg-10-5325-2013  .

•  Field Sensor for In-Situ Detection of Marine Bacterial Biofilms
M. Fischer, M. Wahl, G. Friedrichs
Sea Technol. 54 (2013) 49-52. icon References_ST_Feb2013

• A consistent model for the thermal decomposition of NCN3 and the singlet-triplet relaxation of NCN

J. Dammeier, B. Oden, G. Friedrichs
Int. J. Chem. Kinet. 45 (2013) 30-40; doi: 10.1002/kin.20739  . 

 Using Cavity Ringdown Spectroscopy for Continuous Monitoring of δ13C(CO2) and fCO2 in the Surface Ocean
M. Becker, A. Körtzinger, N. Andersen, B. Fiedler, P. Fietzek, T. Steinhoff, G. Friedrichs

Limnol. Oceanogr.: Methods 10 (2012) 752-766; doi: 10.4319/lom.2012.10.752

• Design and Field Application of a UV-LED Based Optical Fiber Biofilm Sensor
M. Fischer, M. Wahl, G. Friedrichs
Biosensors and Bioelectronics 22 (2012) 172-178; doi: 10.1016/j.bios.2011.12.048

• Direct measurements of the high temperature rate constants of the reactions NCN + O, NCN + NCN, and NCN + M

J. Dammeier, N. Faßheber, G. Friedrichs

Phys. Chem. Chem. Phys. 14 (2012) 1030 - 1037; doi: 10.1039/C1CP22123J  ; Cover Article.

• Direct Measurements of the Rate Constants of the Reactions NCN + NO and NCN + NO2 Behind Shock Waves
J. Dammeier, G. Friedrichs
J. Phys. Chem. A 115 (2011) 14382–14390; doi: 10.1021/jp208715c 

• The dimerization of HNO in aqueous solution: An interplay of solvation effects, fast acid-base equilibria and intramolecular hydrogen bonding?

C. Fehling, G. Friedrichs 

J. Am. Chem. Soc. 133 (2011), 17912–17922; doi: 10.1021/ja2075949  .

• Buchrezension zu "Chemie über den Wolken...und darunter" von R. Zellner (Hrsg.)

G. Friedrichs

Angew. Chem. 123 (2011) 10196-0197; doi: 10.1002/ange.201105604  .  

• Revealing Structural Properties of the Marine Nanolayer from Vibrational Sum Frequency Generation Spectra
K. Laß, G. Friedrichs
J. Geophys. Res. 116 (2011)
C08042/1-15;doi:10.1029/2010JC006609  .

• Boknis Eck Time Series Station (SW Baltic Sea): Measurements from 1957 to 2010
H. W. Bange, A. Dale, H. P. Hansen, J. Karstensen, F. Malien, C. Petereit, K. Laß, G. Friedrichs
LOICZ Inprint 1 (2011) 16-22.

• The Thermal Decomposition of NCN3 as a High Temperature NCN Radical Source: Singlet-Triplet Relaxation and Absorption Cross Section of NCN(3Σ)
J. Dammeier, G. Friedrichs
J. Phys. Chem. A 114 (2010) 12963–12971; doi:10.1021/jp1043046  .

Towards a more quantitative understanding of the marine organic nanolayer

G. Friedrichs  

Abstracts of Papers, 240th ACS National Meeting, Boston, MA, United States, August 22-26, 2010 (2010), PHYS-162.


• Toward Continuous Monitoring of Seawater 13CO2/12CO2 Isotope Ratio and pCO2: Performance of a Cavity Ringdown Spectrometer and Gas Matrix Effects
G. Friedrichs, J. Bock. F. Temps, P. Fietzek, A. Körtzinger, D. Wallace
Limnol. Oceanogr.: Methods 8 (2010), 539-551;doi:10.4319/lom.2010.8.539  .

• Vibrational sum-frequency generation as a probe for composition, chemical reactivity, and film formation dynamics of the sea surface nanolayer
K. Laß, J. Kleber, G. Friedrichs
Limnol. Oceanogr.: Methods 8 (2010) 216-228;
doi:10.4319/lom.2010.8.216  .

• A Precise High-Resolution Near Infrared cw-Cavity Ringdown Spectrometer using a Fourier Transform based Wavelength Calibration
C. Fehling, G. Friedrichs
Rev. Sci. Instrum. 81 (2010) 053109/1-8; doi:10.1063/1.3422254  .

• Products of the Reactions of o-Benzyne with Ethene, Propene, and Acetylene: Mass Spectrometric and Quantum Chemical Studies
G. Friedrichs, E. Goos, J. Gripp, H. Nicken, J.-B. Schönborn, H. Vogel, F. Temps
Z. Phys. Chem. 223 (2009) 387-407

• HCO Formation in the Thermal Unimolecular Decomposition of Glyoxal: Rotational and Weak Collision Effects
G. Friedrichs, M. Colberg, J. Dammeier, T. Bentz, M. Olzmann
Phys. Chem. Chem. Phys. 10 (2008) 6520 - 6533

• C-H bond activation of coordinated pyridine: Ortho-pyridyl-di-technetiumhydridocarbonyl metal cyclus. Crystal structure and dynamic behaviour in solution
M. Zuhayra, U. Lützen, A. Lützen, L. Papp, E. Henze, G. Friedrichs, F. Oberdorfer
Inorg. Chem. 47 (2008) 10177-10182

• Time-resolved cavity ringdown measurements and kinetic modeling of the pressure dependences of the recombination reactions of SiH2 with the alkenes C2H4, C3H6, and t-C4H8
G. Friedrichs, M. Fikri, Y. Q. Guo, F. Temps
J. Phys. Chem. A 112 (2008) 5636-5646

• Review paper: Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part2: Cavity Ringdown Spectroscopy
G. Friedrichs
Z. Phys. Chem. 222 (2008) 31-61, doi:10.1524/zpch.2008.222.1.31

• Review paper: Sensitive Absorption Methods for Quantitative Gas Phase Kinetic Measurements. Part1: Frequency Modulation Spectroscopy
G. Friedrichs
Z. Phys. Chem. 222 (2008) 1-30, doi:10.1524/zpch.2008.222.1.1

• Wide Temperature Range (T = 295 K and 770-1305 K) Study of the Kinetics of the Reactions HCO + NO and HCO + NO2 using Frequency Modulation Spectroscopy
J. Dammeier, M. Colberg, G. Friedrichs
Phys. Chem. Chem. Phys. 9 (2007) 4177-4188

• Kinetics of the Reaction C2H5 + HO2 by Time-Resolved Mass Spectrometry
W. Ludwig, B. Brandt, G. Friedrichs, and F. Temps
J. Phys. Chem. A 110 (2006) 3330-3337

• Room Temperature and Shock Tube Study of the Reaction HCO + O2 using the Photolysis of Glyoxal as an Efficient HCO Source
M. Colberg, and G. Friedrichs
J. Phys. Chem. A 110 (2006) 160-170

• Trendbericht 2005 (Jahresrückblick Physikalische Chemie): Reaktionskinetik
G. Friedrichs
Nachr. Chem. 54 (2006) 285-287.

• Validation of the extended Simultaneous Kinetics and Ringdown Model by Measurements of the Reaction NH2 + NO
G. Friedrichs, M. Colberg, M. Fikri, Z. Huang, J. Neumann, and F. Temps
J. Phys. Chem. A 109 (2005) 4785-4795

• Importance of Gas Solubility Coefficients as a Function of Temperature and Salinity for Use in Nitrogen Fixation Assays
E. Breitbarth, M.M. Mills, G. Friedrichs, and J. LaRoche
Limnol. and Oceanog.: Methods 2 (2004) 282-288, doi:10.4319/lom.2004.2.282

• Validation of a Thermal Decomposition Mechanism of Formaldehyde by Detection of CH2O and HCO behind Shock Waves
G. Friedrichs, D.F. Davidson, and R.K. Hanson; Int. J. Chem. Kinet. 36 (2004) 157-169

• An Extended Simultaneous Kinetics and Ringdown Model: Determination of the Rate Constant for the Reaction SiH2 + O2
Y. Q. Guo, M. Fikri, G. Friedrichs, F. Temps
Phys. Chem. Chem. Phys. 5 (2003) 4622-4630

• A Shock Tube Study of the Reaction NH2 + CH4 → NH3 + CH3
S. Song, D.M. Golden, R.K. Hanson, C.T. Bowman, J.P. Senosiain, C. B. Musgrave, and G. Friedrichs; Int. J. Chem. Kinet. 35 (2003) 304-309

Thermal Decomposition Mechanism of Formaldehyde: Shock Tube Investigations of High Temperature Reaction Kinetics

G. Friedrichs, in: Chemistry in Kiel – Special on the occasion of the 102nd Bunsentagung in Kiel, ed. F. Temps, Kiel 2003, pp 47-50.


• The Gas Phase Oxidation of Silyl Radicals by Molecular Oxygen: Kinetics and Mechanisms
T. Köcher, C. Kerst, G. Friedrichs, and F. Temps; in: Silicon Chemistry - From the Atom to Extended Systems , eds. P. Jutzi and U. Schubert, Wiley-VCH, 2003, ISBN: 3-527-30647-1 

• Quantitative Detection of HCO behind Shock Waves: The Thermal Decomposition of HCO
G. Friedrichs, J.T. Herbon, D.F. Davidson, R.K. Hanson
Phys. Chem. Chem. Phys. 4 (2002) 5778-5788
Abstract  allk3data (experimental data for HCO + Ar H + CO + Ar)

• Direct Measurements of the Reaction H+CH2O → H2+HCO by means of V-UV Detection of Formaldehyde behind Shock Waves
G. Friedrichs, D.F. Davidson, R.K. Hanson
Int. J. Chem. Kinet. 34, 374-386 (2002)

• Investigation of the Thermal Decomposition of Ketene and of the Reaction CH2 + H2 = CH3 + H
G. Friedrichs and H.Gg. Wagner
Z. Phys. Chem. 215, 1601-1623 (2001)

• Nonequilibrium Excitation of C2 Radicals during the Thermal Decomposition of C3O2 behind Shock Waves
J. Deppe, A. Emelianov, A. Eremin, G. Friedrichs, V. Shumova, H.Gg. Wagner, I. Zaslonko
Z. Phys. Chem. 215, 417-425 (2001)

• Quantitative FM Spectroscopy at High Temperatures: The Detection of 1CH2 behind Shock Waves G. Friedrichs and H.Gg. Wagner; Z. Phys. Chem. 214, 1723-1746 (2000)

• Direct Measurements of the Reaction NH2+ H2→ NH3+ H at Temperatures from 1360 to 2130K
G. Friedrichs, H.Gg. Wagner
Z. Phys. Chem. 214, 1151-1160 (2000)

• Investigation of Amino and Methylene Radical Reactions behind Shock Waves using Frequency Modulation Spectroscopy
in German, Ph.D. thesis, Göttingen 1999
G. Friedrichs, Frequenzmodulierte Spektroskopie zur Untersuchung von Reaktionen des Amino- und Methylenradikals hinter Stoßwellen, Cuvillier Verlag, Göttingen 1999, ISBN 3-89712-741-5 

• A Kinetic Study of the Reaction NH2 with NO in the Temperature Range from 1400 to 2800 K
J. Deppe, G. Friedrichs, H.-J.-Römming, H.Gg. Wagner
Phys. Chem. Chem. Phys. 1, 427-435 (1999)

• The Thermal Decomposition of NH2 and NH Radicals
J. Deppe, G. Friedrichs, A. Ibrahim, H.-J. Römming, H.Gg. Wagner
Ber. Bunsenges. Phys. Chem. 102, 1474-1485 (1998)

Investigation of the Thermal Decay of Carbon Suboxide
G. Friedrichs and H.Gg. Wagner
Z. Phys. Chem. 203, 1-14 (1998)

• Thermal Decomposition and Photolysis of Carbon Suboxide
in German, Diploma thesis, Göttingen 1996
G. Friedrichs, Thermischer Zerfall und Photolyse von Kohlensuboxid


A (2013), DOI: 10.1021/jp404087s, just accepted. Normal 0 21 false false false DE X-NONE X-NONE
Zuletzt aktualisiert am Mittwoch, den 30. Mai 2018 um 10:08 Uhr
<< Start < Zurück 1 2 Weiter > Ende >>

Seite 1 von 2